Multi-Machine Power Stabilization Controller (MMPSC) for Power Quality Applications
نویسندگان
چکیده
Power system stability control is a challenging task in power generation, transmission and distributions based applications and in many fields. Multi-machine power compensation control can achieve system stabilization within a prescribed time in conventional controller. However, limited time control cannot guarantee the system convergence within particular time independent on the initial condition, which makes illegal application into the practical system if the initial condition is unknown in advance. The proposed Multi-Machine Power System Compensation (MMPSC) control overcomes the issues in existing systems and limited time stability controller. Due to this attractive solution, multi-machine power compensation control stability has found applications in uniform exact differentiator design for the multi-agent system. The proposed multi-machine power compensation control reduces damping oscillation and improves the power system stability control. The main objective of proposed controller is to improve the stability of MMPSC limited time system stabilization independent of the initial state and ensure fast convergence both far away from and at a close range of the power monitoring system. This feature can reduce the loss caused by unwanted oscillation and avoid voltage collapse. To overcome the linearity problem of terminal mode control, saturation function is introduced to limit the amplitude of power input. In comparison with the existing results on stability control, the proposed MMPSC applies a simpler method to overcome stability problem and achieves higher efficiency.
منابع مشابه
Design of Multi-Stage Fuzzy PID Bundled Artificial Bee Colony for Multi-machine PSS
This paper presents a new strategy based on Multi-stage Fuzzy (MSF) PID controller based on Artificial Bee Colony (ABC) for damping Power System Stabilizer (PSS) in multi-machine environment. The recent studies in artificial intelligence demonstrated that the ABC optimization is strong intelligent method in complicated stability problems. Also, finding the parameters of PID controller in power ...
متن کاملDesign of Multi-Stage Fuzzy PID Bundled Artificial Bee Colony for Multi-machine PSS
This paper presents a new strategy based on Multi-stage Fuzzy (MSF) PID controller based on Artificial Bee Colony (ABC) for damping Power System Stabilizer (PSS) in multi-machine environment. The recent studies in artificial intelligence demonstrated that the ABC optimization is strong intelligent method in complicated stability problems. Also, finding the parameters of PID controller in power ...
متن کاملPower System Stability Improvement via TCSC Controller Employing a Multi-objective Strength Pareto Evolutionary Algorithm Approach
This paper focuses on multi-objective designing of multi-machine Thyristor Controlled Series Compensator (TCSC) using Strength Pareto Evolutionary Algorithm (SPEA). The TCSC parameters designing problem is converted to an optimization problem with the multi-objective function including the desired damping factor and the desired damping ratio of the power system modes, which is solved by a SPEA ...
متن کاملStudies with a Generalized Neuron Based PSS on a Multi-Machine Power System
An artificial neural network can be used as an intelligent controller to control non-linear, dynamic system through learning. It can easily accommodate non-linearities and time dependencies. Most common multi-layer feed-forward neural networks have the drawbacks of large number of neurons and hidden layers required to deal with complex problems and require large training time. To overcome these...
متن کاملA Robust FACTS Damping Controller Design to Mitigate Interarea Oscillations in a Multi-machine Power System
In this paper, damping of interarea oscillations using simultaneous coordination of static Var compensator (SVC) and power system stabilizer (PSS) is considered. To be effective in damping of oscillations, the best-input signal of power oscillation damper (POD) associated with SVC is selected using Hankel singular values (HSVs), and right-hand plane zeros (RHP-zeros). The 4-machine-2 area...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016